
Beating the System:
Explorer-Style Active Buttons
by Dave Jewell

Last month I promised to de-
scribe the development of an

Internet Explorer style button
control. I designed this button to
complement the Coolbar code that
I developed a couple of months
back. Since then, I’ve taken the
plunge and installed Office97 and
it’s now obvious that Microsoft are
using the same combination of
Coolbars and active button con-
trols throughout all their new
Office applications, setting a new
standard for user interface design.

So What’s An Active Button?
When I use the term active button
control or just active button, I’m not
referring to ActiveX or anything of
that nature. Rather, I’m using my
own home-grown terminology for
the way in which Microsoft’s re-
cently developed controls recog-
nise that the mouse is moving over
them (without pressing a mouse
button) and change their appear-
ance to indicate that they can be
clicked. This ‘sit up and beg’ behav-
iour is an excellent idea because it
provides immediate visual feed-
back to novice users, showing
them what parts of a user interface
will respond to mouse clicks.

Because of Delphi 3’s ability to
convert VCL components into
ActiveX controls, and because of
the introduction of Microsoft’s
Visual Basic 5.0 CCE (Control Crea-
tion Edition) development system,
you can create custom ActiveX
controls more easily than ever
before. I anticipate an explosion of
new controls over the next twelve
to eighteen months and it’s there-
fore critical to make your new con-
trol as easy to use and intuitive as
possible. Making it ‘active’ goes a
long way towards achieving this. At
the same time, it’s important to
make your new controls consistent
with industry leaders such as
Microsoft. I’ve endeavoured to

make this control respond as much
like the Microsoft equivalent as
possible.

Just to show you where we’re
going, take a look at Figure 1, which
shows a small demo program that
I knocked up. This demo uses the
Coolbar code from a couple of
months ago, with one of the Cool-
bar bands containing a TPanel com-
ponent. Inside this panel are four of
our new Explorer style buttons.
As with Microsoft’s buttons,
TExplorerButton can display itself
in one of four different ways: active
(when the mouse is over the but-
ton), inactive (the button’s normal
‘idle’ state), disabled, or pressed
down (when the mouse is actually
clicked over the button). In Figure
1, the fourth button is pressed
down and displaying a drop-down
menu.

As you move the mouse over a
button, it automatically toggles
from the inactive to active state.
This is indicated by drawing a
raised border around the button
and changing the displayed glyph
(Borland’s term for small bitmaps
displayed inside button controls)
from a monochrome bitmap to a

colour one. Similarly, when a but-
ton is disabled, the glyph is drawn
with a greyed-out appearance and
the button’s caption text (if any) is
drawn in a three-dimensional,
greyed-out manner. It’s worth
pointing out that the caption and
glyphs are optional: you can have
both, you can have a button with a
caption only, or you can just have
the glyph. You can even have a
button with neither caption nor
glyph, but it doesn’t look terribly
exciting!

The Explorer button supports a
number of different event types,
with which you can associate an
event handler in the normal Delphi
way. In addition to standard events
such as OnClick and OnMouseMove,
there are a couple of custom events
defined (OnMouseEnter and On-
MouseExit) which allow you to do
something unusual when the
mouse starts moving over a button
or leaves a button. These events
obviously correspond to the time
when the button flips from its inac-
tive to active state (and vice versa).
By utilising these events, you might
(for example) change some aspect
of the main window while the

➤ Figure 1: Here’s a view of the TExplorerButton control being used
in a demo application: the right-most of the four buttons has an
attached popup menu which you can see being used

8 The Delphi Magazine Issue 20

mouse is over a control. This might
be a good way of allowing the user
to ‘preview’ the effect of clicking a
button without actually carrying
out the action.

Ideas like this are fundamental to
good user interface design. It’s al-
ways a good idea to give users feed-
back on what will be the effect of
carrying out some action. At the
same time, you need to provide a
way for a user to ‘back off’ from
some action even after starting. For
example, if you click and hold down
the mouse on an Internet Explorer
button, you’ll see the button’s ap-
pearance change to indicate that
it’s been pressed. However, if you
then drag the mouse outside of the
control (keeping the mouse button
held down) you’ll see the button’s
appearance change back to the in-
active state. This is the control’s
way of saying “Yes, you’ve pressed
me, but if you let go of the mouse
now, we’ll forget the whole thing –
Ok?” I’ve tried to build the same
user-friendliness into the button
code presented here.

Reasons To Be Windowed
Last month, I referred to a button
control that was included with the
Issue 19 cover disk. Although this
control claimed to be resource
friendly, it actually allocated a
TForm object behind the program-
mer’s back, so to speak. When
designing a Delphi control, it’s very
important to decide where to de-
rive the control from and it makes
a lot more sense to derive your new
class from the right ancestor in the
first place, rather than having to
resort to horrible kludges like that.
These days, with the advent of
Windows 95 (which can cope with
many more system resources than
Windows 3.1), it really isn’t a hei-
nous crime to allocate a window
handle! Some of the most innocu-
ous VCL components do it. For ex-
ample, did you know that TTimer
allocates a window handle, even
though it isn’t (strictly speaking) a
windowed control? Have a look at
TTimer.Create (EXTCTRLS.PAS in
the VCL source code) if you don’t
believe me!

The fact is, TTimer has to have a
window handle because it uses

API-level timer messages. These
messages have to be sent to a win-
dow, hence the need for TTimer to
allocate a small window for itself.
This is sensible design: one extra
window handle isn’t going to break
the bank. If TTimer didn’t allocate a
window, it would have to send the
window messages to another
windowed control, such as the par-
ent form, and it would then have to
sub-class the form’s window proce-
dure in order to receive the
messages for itself. Sounds like a
monumental kludge? You bet! You
can see what I mean about choos-
ing the right starting point for a
control.

In exactly the same way, our
Explorer button also needs a win-
dow handle. Any active control
which doesn’t actually have the in-
put focus but needs to respond to
mouse movement in it’s ‘air space’
(so to speak!) must capture the
mouse, and you can’t capture the
mouse unless you’ve got a window
handle to send mouse messages to.
Strictly speaking, you can use the
VCL’s MouseCapture property to
capture mouse input even though
your control isn’t windowed:
everything going back to TControl
can use this run-time property.
However, this is an illusion sup-
ported by clever coding in the VCL
library – an illusion that breaks in a
multi-threaded app because of the
use of global variables.

Why the big deal about capturing
the mouse? A button such as TEx-
plorerButton needs to be able to
capture the mouse so that all
mouse-related messages are sent
to it. If it didn’t, there’s the possi-
bility that the mouse could be
quickly ‘snatched’ away from the
control, leaving the control in a
highlighted state. Equally, once the
mouse has been pressed down
within the control, it’s necessary to
be able to track the movement of
the mouse (even when the mouse
moves outside of the control) so
that the button knows how to
display itself as the user drags it
around the screen. I therefore
chose to derive TExplorerButton
from TCustomControl.

I’ve added a few other goodies to
the button as well. A Position

property is used to control the
position of the glyph relative to the
caption string. It can be to the left,
right, above or below. In Figure 1,
all the buttons have their Position
property set to bsTop: glyph above.
Another property, Gap, controls the
distance between the glyph and
the caption string. Three individual
bitmap properties are used to
supply the three bitmaps required
for each of the buttons: active,
inactive and disabled.

Frankly, this is one aspect of my
control which I wasn’t very happy
with. Having to supply three differ-
ent bitmaps for each control can be
a bit tedious when you’ve got sev-
eral controls in your toolbar. In
principle, it should be possible to
write code to take a single active
bitmap and create monochrome
and disabled versions of it. So, you
should only need one TBitmap prop-
erty instead of three. I looked into
the possibility of doing this but de-
cided that the amount of extra
code involved was considerable
and might be better covered in a
future article dedicated to the sub-
ject. In the meantime, if you really
want to do this now, and you’re an
MSDN member, then try scanning
the MSDN CD-ROM for BMUTIL and
monochrome and you’ll find a lot of
sample C code which can be con-
verted into the equivalent Pascal.

Another thing I did was to expose
the Align property. When you’re
populating a toolbar (such a TPanel
component) with a number of
these buttons, it’s useful being able
to set the Align property of each
new button to alLeft so that it
‘snaps’ up against the previously
added button.

Yet another property is Trans-
parentColor, which allows you to
set up a transparent colour for the
three glyphs used by a particular
button. As you’ll probably appreci-
ate, Windows only deals with rec-
tangular bitmaps, which makes it
rather problematic to paint a par-
ticular bitmap onto an arbitrarily
coloured surface without leaving a
rectangular border around the bit-
map. Fortunately, the API contains
some techniques which enable you
to get around this, and Borland
have thoughtfully provided this

10 The Delphi Magazine Issue 20

same functionality within the VCL
through the use of the BrushCopy
routine. Most button bitmaps,
Borland’s included, use clOlive as
the transparent colour (probably
because it’s such a revolting colour
that no-one in their right mind
would want to use it in a bitmap for
any other reason!), and I’ve there-
fore arranged that the Transpar-
entColor property defaults to this
value. You’ll only need to change
this property if you use any bit-
maps with a different colour value
for their background.

How It Works
Right then, let’s get down to busi-
ness and take a look at the code
itself, which is given in Listing 1.
There are two interesting aspects
to this control: the way in which it
paints itself and the manner in
which it responds to mouse events.
All the painting code is contained
within (or called from) the TEx-
plorerButton.Paint routine. The
first job here is to fill in the back-
ground of the control using the
current Color property. Next, the
DrawFrame routine is called to
optionally draw a 3D-frame around
the control.

As noted earlier, we only get to
draw a frame if the mouse is over
the control (state equals bsActive)
or if the mouse is currently pressed
down over the control (bsDown). If
the control is inactive, or the
mouse has been pressed down and
dragged outside of the control,
then no frame is shown. This is
for consistency with Internet
Explorer. As an added conven-
ience, the control detects if it’s be-
ing used in design mode and if so
draws a standard frame. If you
don’t do this, it’s very hard to see
where the control begins and ends
while you’re laying out a form!
Depending on whether the control
is active or depressed, the Draw-
Frame code then draws a raised or
recessed frame.

Back in the main Paint routine,
the code calculates bounding rec-
tangles for the caption and glyph
before passing the rectangles to
the Layout routine. This in turn re-
locates the two bounding rectan-
gles according to the current value

of the Position property. One bit of
sneakiness here is the way in which
the Layout routine is called, condi-
tionally swapping the two parame-
ters before the call. By doing things
this way, the Layout procedure only
has to cater for two possibilities
instead of four. The Layout code
also takes care of offsetting both
rectangles by one pixel if the but-
ton is recessed, so as to add to the
3D effect.

The only other thing worthy of
note in the painting code is the way
in which a disabled caption is
drawn. This just uses the standard
trick of drawing the same string
twice (first shadowed and then
highlighted) with a one pixel offset
between the two. This gives the
chiselled, 3D appearance of a
disabled caption.

The mouse handling code
(implemented in WMLButtonDown,
WMLButtonMove and WMLButtonUp)
looks simple but needs some care-
ful thought. Most user interface
controls which respond to the
mouse can be thought of as simple
‘state machines’ and you need to
consider all the possible states
which are needed to correctly rep-
resent the behaviour of the con-
trol, plus the transitions that are
needed to move from one state to
another. There are also a number
of non-obvious subtleties in the use
of the VCL class library.

For example, controls which de-
rive from TCustomControl will, by
default, have the csCaptureMouse
style bit set in the ControlStyle
property. This style bit causes the
control to automatically capture
the mouse when the left-hand
mouse button is clicked and not to
‘let go’ of the capture until the
mouse button is released. Since
this is pretty well what we want to
happen, I left the csCaptureMouse bit
set; you can turn these bits off in
the control’s constructor if you
want. However, while developing
the control, I forgot that calling the
inherited WLMButtonUp routine will
turn off the mouse capture, and
this is definitely not what we want
if the mouse is still over the
control, for the reasons given
above. That’s why I have to set the
MouseCapture property back to True

inside my own WMLButtonUp han-
dler. If I didn’t do this, clicking the
mouse button inside the control
would effectively leave the button
in what amounted to an invalid
state for the control, and moving
the mouse away from the control
after clicking would leave the
button in a highlighted state.

Maybe you think that these sort
of deliberations sound a bit tortu-
ous? Well, they probably are, but
you need to face these sort of is-
sues when designing well-behaved
user interface controls. Some years
ago, I spent 18 months of my life
commuting from the Essex coast to
a job in Uxbridge, Middlesex. Twice
a day, I traversed the entire width
of the London Underground
network! I killed the time by read-
ing and by doing those popular
‘Logic Problems’ books which you
can buy from any newsagent. In
retrospect, I feel the Logic Prob-
lems were excellent training for
developing user interface controls!

Popup Menu Support
There’s one other feature of our
Explorer button that I haven’t men-
tioned so far. If you take a look at
some of the Microsoft buttons in
Internet Explorer or Office97, you’ll
see that they have an associated
popup menu. Clicking them causes
a drop-down menu to appear im-
mediately below the button. I
wanted my button to have the
same functionality.

As it happens, this is pretty
straightforward. As you’ll know,
the TCustomControl already pro-
vides access to the standard VCL
PopupMenu property. We can use
this property, in the normal way, to
associate a popup menu with our
button control. Inside the button
code, we can look to see if the prop-
erty has a non-Nil value and, if so,
display the menu instead of behav-
ing like a simple clickable button.
However, a little further surgery is
required before things happen the
way we’d like.

For starters, PopupMenu is de-
signed to respond to right-hand
mouse clicks, whereas we want the
menu to appear in response to a
normal left-button click. In order to
fix this, you’ll see that I’ve added a

12 The Delphi Magazine Issue 20

➤ Figure 2: This
enlarged view of
the Explorer button
shows the small
down-pointing
arrow mark which
is automatically
displayed if the
button has an
attached popup
menu

new right-click handler which in-
tercepts WM_RButtonDown messages.
The new event handler simply sets
the AutoPopup field in the associ-
ated popup menu, and then calls
the inherited handler. It’s the
AutoPopup field which determines
whether or not a menu will pop up
in response to a right-hand mouse
click. By setting this field to zero,
we ensure that right mouse clicks
are effectively ignored. You might
be thinking that we could just as
easily set the AutoPopup property
(it’s a published field) of the popup
menu at design time. However,
when designing a re-usable compo-
nent, it’s a good idea to make it as
bullet-proof as possible. Never as-
sume that the component user has
set things up the way we’d like
them to be!

It’s also important to decide
where we’re going to set the popup
menu’s AutoPopup handler to False.
Should we do it in the component’s
constructor? Should we do it when-
ever the assigned popup menu
changes? By doing it in one place,
in the right-click handler itself,
we’ve automatically covered all the
bases. This is because the inher-
ited right-click handler is actually
responsible for calling the popup
menu’s Popup method (see the VCL
source) if the menu’s AutoPopup flag
is True. Thus, you can see why it’s
important to clear the flag before
calling the inherited handler.

Having trampled all over the de-
fault action of the right-hand
mouse button, we next need to turn
our attention to left-hand mouse
clicks. If you look at the left-click
handler, you’ll see that irrespec-
tive of whether or not there’s a
popup menu, I first set the button
state to bsDown and draw the button
in that state. This is for visual com-
patibility with Internet Explorer,
which likewise draws buttons in
the ‘down’ state while a popup
menu is active.

Having done this, the code then
checks to see if there’s an associ-
ated popup menu and, if so, calcu-
lates the screen position at which
the menu should appear. For a
menu’s Popup method, the X and Y
values are always in screen co-
ordinates (to allow you to draw a

popup menu anywhere on the
screen) which is why we need a call
to ClientToScreen. My code is writ-
ten so as to draw the popup menu
immediately below the Explorer
button. Going back to what I said
earlier, the code makes as few as-
sumptions as possible about the
health (!) of the popup menu, and
therefore it ensures that the Align-
ment property is set to paLeft imme-
diately before the menu is
displayed. Again, if you don’t do
this, then things won’t look very
nice if the menu happens to be set
for a non-standard alignment.

Finally, the PopupComponent prop-
erty of the menu is set to Self (this
instance of TExplorerButton) and
the menu’s Popup method is called
to actually display the menu (more
on PopupComponent in a minute).
Internally, the Popup method calls
the API routine TrackPopupMenu and
doesn’t return until the menu has
been dismissed. This is an impor-
tant point because once we get
back from the call, we know that it’s
safe to ‘un-press’ the button and
return its state to bsInactive. Why
inactive? Well, since the menu is
positioned immediately below the
button, it stands to reason that it
we click the mouse button in the
menu and the menu disappears,
the mouse will no longer be located
over the button, and therefore it’s
appropriate to go back to display-
ing the button in its inactive state.

Menu Initialisation Issues
As you’ll no doubt appreciate,
many applications modify the ap-
pearance of a menu according to
certain criteria. For example, most
programs disable the Paste menu
item unless there’s actually some-
thing on the Windows clipboard

that can be pasted. It doesn’t make
sense to enable the Copy item un-
less there’s a current selection
which it makes sense to copy, and
so forth. While it’s possible to mod-
ify menu items as the various
criteria change, it’s much more
convenient to simply set up the
state of menu items in a particular
drop-down menu immediately
before the menu is displayed.

Delphi caters for this type of ap-
proach by providing an OnPopup
event for popup menus. By writing
an OnPopup event handler, you can
get control immediately before a
menu appears and use the oppor-
tunity to set up menu items as re-
quired. I decided not to publish an
event handler for the Explorer but-
ton but rather to simply rely on the
OnPopup functionality in the associ-
ated menu. In other words, if you
want something special to happen
immediately before your popup
menu appears, just add an OnPopup
handler to the menu and do your
menu initialisation in there.

This raises the question of what
to do if the same popup menu is
used by more than one Explorer
button. That’s an unlikely scenario,
but we need to cater for it by mak-
ing sure that the menu’s PopupCom-
ponent property is initialised before
calling the Popup method. This iden-
tifies the component that’s using
the menu and allows us to do differ-
ent things according to which Ex-
plorer button is currently using the
menu. By examining the PopupCom-
ponent property inside the menu’s
OnPopup handler, you can deter-
mine which button is using it and
therefore know which items to
place into the menu.

As an extra bit of icing on the
cake, I’ve added another feature to

14 The Delphi Magazine Issue 20

our Explorer button. You’ll notice
that Internet Explorer displays a
small downward-pointing triangle
in the top right-hand corner of a
button to indicate that it has an
associated drop-down menu. I’ve
modified the Paint method of my
button so that, in the same way, if
the PopupMenu property of the but-
ton isn’t Nil, a small drop-down
menu mark will be displayed. I’ve
hard-wired the size and position of
the mark, but you might consider
having the position of the mark
change dynamically as the Position
property is altered to change the
layout of the control. If you wanted,
you could also add another TBitmap
property so that the user of the
component could assign a custom
mark. However, that’s probably
taking things a bit too far: as I’ve
observed in the past, good compo-
nent design needs to achieve an
engineering compromise between
complexity and flexibility!

The actual DrawMenuGlyph routine
is the code responsible for drawing

the triangle using the VCL’s Polygon
method. This technique is quick
and easy to use, but be warned that
it does have disadvantages. Like a
number of other VCL routines,
Polygon relies upon Delphi Pascal’s
open-array capability: the ability to
pass an arbitrarily sized array to a
routine. The implementation of
open arrays in Delphi Pascal is cun-
ning (see my previous articles on
Delphi code generation), but it
does generate a lot of code; if
you’re drawing a lot of very com-
plex polygons using this approach,
you’ll get a substantial reduction in
code size by switching to a series
of simpler line drawing operations.

Finally, bear in mind that at de-
sign-time, assigning an Explorer
button’s PopupMenu property won’t
instantly cause the menu mark to
appear or disappear. This is
because there’s no internal VCL
message which is triggered by a
change in this property. You’ll re-
member that in last month’s code,
I exploited the cm_EnabledChanged

message to cause a button to in-
stantly redraw when it’s Enabled
property is changed, but there’s
no equivalent cm_PopupMenuChanged
message. It’s not a big problem, but
if you reassign the PopupMenu prop-
erty at run-time, you should call the
control’s Refresh method to ensure
that the change is immediately
apparent.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJew-
ell@aol.com or DaveJewell@com-
puserve.com. Portions of this
article first appeared in PC Pro
magazine and are Copyright ©
1995-1996, D S Jewell.

unit ExpBtn;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, Menus;
type
 TExpBtnState =
 (bsInactive, bsActive, bsDown, bsDownAndOut);
 TGlyphPosition = (bsTop, bsBottom, bsLeft, bsRight);
 TExplorerButton = class(TCustomControl)
 private
 fCaption: String;
 fInactive: TBitmap;
 fActive: TBitmap;
 fDisabled: TBitmap;
 fState: TExpBtnState;
 fMouseExit: TNotifyEvent;
 fMouseEnter: TNotifyEvent;
 fTransparentColor: TColor;
 fGlyphPosition: TGlyphPosition;
 procedure DrawFrame;
 procedure SetCaption(const Val: String);
 procedure SetInactiveGlyph(Val: TBitmap);
 procedure SetActiveGlyph(Val: TBitmap);
 procedure SetDisabledGlyph(Val: TBitmap);
 function CurrentGlyph: TBitmap;
 procedure SetTransparentColor(Val: TColor);
 procedure SetGlyphPosition(Val: TGlyphPosition);
 procedure Layout(var txtRect, bitRect: TRect);
 protected
 procedure Paint; override;
 procedure WMLButtonDown(var Message: TWMLButtonDown);
 message wm_LButtonDown;
 procedure WMRButtonDown(var Message: TWMRButtonDown);
 message wm_RButtonDown;
 procedure WMMouseMove(var Message: TWMMouseMove);
 message wm_MouseMove;
 procedure WMLButtonUp(var Message: TWMLButtonUp);
 message wm_LButtonUp;
 procedure CMEnabledChanged(var Message: TMessage);
 message cm_EnabledChanged;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property Color;
 property Font;
 property Enabled;
 property ParentFont;
 property PopupMenu;
 property ShowHint;
 property ParentShowHint;
 property Visible;

 property OnClick;
 property Align;
 property OnDblClick;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 property Caption: String read fCaption write SetCaption;
 property GlyphInactive: TBitmap
 read fInactive write SetInactiveGlyph;
 property GlyphActive: TBitmap
 read fActive write SetActiveGlyph;
 property GlyphDisabled: TBitmap
 read fDisabled write SetDisabledGlyph;
 property Position: TGlyphPosition read fGlyphPosition
 write SetGlyphPosition default bsTop;
 property TransparentColor: TColor read fTransparentColor
 write SetTransparentColor default clOlive;
 property OnMouseExit: TNotifyEvent
 read fMouseExit write fMouseExit;
 property OnMouseEnter: TNotifyEvent
 read fMouseEnter write fMouseEnter;
 end;
procedure Register;
implementation
constructor TExplorerButton.Create(AOwner: TComponent);
begin
 Inherited Create(AOwner);
 fInactive := TBitmap.Create;
 fActive := TBitmap.Create;
 fDisabled := TBitmap.Create;
 fState := bsInactive;
 fGlyphPosition := bsTop;
 fTransparentColor := clOlive;
 Width := 50; Height := 40;
end;
destructor TExplorerButton.Destroy;
begin
 fInactive.Free;
 fActive.Free;
 fDisabled.Free;
 Inherited Destroy;
end;
procedure TExplorerButton.CMEnabledChanged(
 var Message: TMessage);
begin
 Inherited;
 Invalidate;
end;
procedure TExplorerButton.SetInactiveGlyph(Val: TBitmap);
begin
 fInactive.Assign(Val); { ** CONTINUED OVER THE PAGE ––> }

➤ Listing 1 (continues overleaf)

April 1997 The Delphi Magazine 15

{ ** LISTING 1 CONTINUED FROM PREVIOUS PAGE }
 Invalidate;
end;
procedure TExplorerButton.SetActiveGlyph(Val: TBitmap);
begin
 fActive.Assign(Val);
 Invalidate;
end;
procedure TExplorerButton.SetDisabledGlyph(Val: TBitmap);
begin
 fDisabled.Assign(Val);
 Invalidate;
end;
procedure TExplorerButton.SetCaption(const Val: String);
begin
 if fCaption <> Val then begin
 fCaption := Val;
 Invalidate;
 end;
end;
procedure TExplorerButton.SetTransparentColor(Val: TColor);
begin
 if fTransparentColor <> Val then begin
 fTransparentColor := Val;
 Invalidate;
 end;
end;
procedure TExplorerButton.SetGlyphPosition(
 Val: TGlyphPosition);
begin
 if fGlyphPosition <> Val then begin
 fGlyphPosition := Val;
 Invalidate;
 end;
end;
function TExplorerButton.CurrentGlyph: TBitmap;
begin
 { Default to inactive glyph - use others if present }
 Result := fInactive;
 if (fState in [bsActive, bsDown]) and
 (not fActive.Empty) then
 Result := fActive;
 if (not Enabled) and (not fDisabled.Empty) then
 Result := fDisabled;
end;
procedure TExplorerButton.DrawFrame;
var rClient: TRect;
 State: TExpBtnState;
 LT, BR: TColor;
begin
 State := fState;
 rClient := ClientRect;
 { If we’re designing, draw component in ’Active’ state }
 if csDesigning in ComponentState then State := bsActive;
 { Only Active and Down states have a border }
 if State in [bsDown, bsActive] then with Canvas do begin
 if State = bsActive then begin
 LT := clBtnHighlight; BR := clBtnShadow;
 end else begin
 LT := clBtnShadow; BR := clBtnHighlight;
 end;
 with rClient do begin
 Pen.Color := LT;
 MoveTo(Right - 1, 0); LineTo(0, 0);
 LineTo(0, Bottom - 1);
 Pen.Color := BR;
 MoveTo(1, Bottom - 1);
 LineTo(Right - 1, Bottom - 1);
 MoveTo(Right - 1, 1);
 LineTo(Right - 1, Bottom);
 end;
 end;
end;
procedure TExplorerButton.Layout(
 var txtRect, bitRect: TRect);
var hBit, vBit, hTxt, vTxt: Integer;
begin
 hBit := bitRect.Right - bitRect.Left;
 vBit := bitRect.Bottom - bitRect.Top;
 hTxt := txtRect.Right - txtRect.Left;
 vTxt := txtRect.Bottom - txtRect.Top;
 case fGlyphPosition of
 bsTop, bsBottom :
 begin
 bitRect.Left :=(Width - hBit) div 2;
 txtRect.Left := (Width - hTxt) div 2;
 bitRect.Top := (Height - (vBit + vTxt)) div 2;
 txtRect.Top := bitRect.Top + vBit;
 end;
 bsLeft, bsRight :
 begin
 bitRect.Top := (Height - vBit) div 2;
 txtRect.Top := (Height - vTxt) div 2;
 bitRect.Left := (Width - (hBit + hTxt)) div 2;
 txtRect.Left := bitRect.Left + hBit;
 end;
 end; { case }
 bitRect.Right := bitRect.Left + hBit;
 bitRect.Bottom := bitRect.Top + vBit;

 txtRect.Right := txtRect.Left + hTxt;
 txtRect.Bottom := txtRect.Top + vTxt;
 { If button down, draw text and glyph down and to right }
 if fState = bsDown then begin
 OffsetRect(bitRect, 1, 1);
 OffsetRect(txtRect, 1, 1);
 end;
end;
procedure TExplorerButton.Paint;
var
 x, y: Integer;
 Glyph: TBitmap;
 txtRect, bitRect, glyphRect: TRect;
 procedure DrawMenuGlyph(x, y: Integer; Color: TColor;
 Style: TBrushStyle);
 begin
 with Canvas do begin
 Pen.Color := Color;
 Brush.Color := clBlack;
 Brush.Style := Style;
 Canvas.Polygon([Point(x, y), Point(x + 8, y),
 Point(x + 4, y + 4)]);
 end;
 end;
begin
 with Canvas do begin
 Brush.Color := Color; { Fill control background }
 Brush.Style := bsSolid;
 FillRect(ClientRect);
 DrawFrame; { Draw control frame - if applicable }
 { Figure out size of text and display bitmaps }
 Font := Self.Font;
 Glyph := CurrentGlyph;
 txtRect :=
 Rect(0, 0, TextWidth(Caption), TextHeight(Caption));
 bitRect := Rect(0, 0, Glyph.Width, Glyph.Height);
 glyphRect := bitRect;
 { Now calculate position of text and bitmap }
 if fGlyphPosition in [bsTop, bsLeft] then
 Layout(txtRect, bitRect)
 else
 Layout(bitRect, txtRect);
 { First, draw the caption }
 Brush.Style := bsClear;
 if Enabled then
 TextRect(txtRect, txtRect.left, txtRect.top, fCaption)
 else begin
 Font.Color := clBtnShadow;
 TextRect(txtRect, txtRect.left, txtRect.top, fCaption);
 OffsetRect(txtRect, 1, 1);
 Font.Color := clBtnHighlight;
 TextRect(txtRect, txtRect.left, txtRect.top, fCaption);
 end;
 { Draw the drop-down menu ’glyph’ }
 if PopupMenu <> Nil then begin
 x := Width - 14; y := 4;
 if Enabled then begin
 if fState = bsDown then begin
 Inc(x);
 Inc(y);
 end;
 DrawMenuGlyph(x, y, clBlack, bsSolid);
 end else begin
 DrawMenuGlyph(x, y, clBtnShadow, bsClear);
 DrawMenuGlyph(x + 1, y + 1, clBtnHighlight, bsClear);
 end;
 end;
 { Finally, draw the glyph }
 Brush.Color := Color;
 BrushCopy(bitRect, Glyph, glyphRect, fTransparentColor);
 end;
end;
procedure TExplorerButton.WMRButtonDown(
 var Message: TWMRButtonDown);
begin
 { Disable AutoPopup before calling Inherited }
 if PopupMenu <> Nil then
 PopupMenu.AutoPopup := False;
 Inherited;
end;
procedure TExplorerButton.WMLButtonDown(
 var Message: TWMLButtonDown);
var pt: TPoint;
 InControl: Boolean;
begin
 Inherited;
 InControl := PtInRect(GetClientRect,
 Point(Message.XPos, Message.YPos));
 if InControl then begin
 MouseCapture := True;
 fState := bsDown;
 Invalidate;
 if PopupMenu <> Nil then begin
 pt :=
 Parent.ClientToScreen(Point(Left-1, Top+Height));
 PopupMenu.Alignment := paLeft;
 PopupMenu.PopupComponent := Self;
 PopupMenu.Popup(pt.x, pt.y);
 fState := bsInactive;
 MouseCapture := False;
 Invalidate; { ** CONTINUED ON FACING PAGE ––> }

16 The Delphi Magazine Issue 20

{ ** LISTING 1 CONTINUED FROM FACING PAGE }
 end;
 end;
end;
procedure TExplorerButton.WMMouseMove(
 var Message: TWMMouseMove);
var InControl: Boolean;
begin
 Inherited;
 InControl := PtInRect(GetClientRect,
 Point(Message.XPos, Message.YPos));
 if(fState = bsDown) and (not InControl) then begin
 fState := bsDownAndOut;
 Invalidate;
 end;
 if (fState = bsDownAndOut) and InControl then begin
 fState := bsDown;
 Invalidate;
 end;
 case fState of
 bsInActive :
 if InControl then begin
 fState := bsActive;
 if Assigned(fMouseEnter) then
 fMouseEnter(Self);
 MouseCapture := True;
 Invalidate;
 end;
 bsActive :
 if not InControl then begin

 fState := bsInActive;
 if Assigned(fMouseExit) then
 fMouseExit(Self);
 MouseCapture := False;
 Invalidate;
 end;
 end;
end;
procedure TExplorerButton.WMLButtonUp(
 var Message: TWMLButtonUp);
var InControl: Boolean;
begin
 Inherited;
 InControl := PtInRect(GetClientRect,
 Point(Message.XPos, Message.YPos));
 if InControl then begin
 fState := bsActive;
 MouseCapture := True;
 end else begin
 fState := bsInactive;
 MouseCapture := False;
 end;
 Invalidate;
end;
procedure Register;
begin
 RegisterComponents(’Pilgrim’’s Progress’,
 [TExplorerButton]);
end;
end.

April 1997 The Delphi Magazine 17

	So What’s An Active Button?
	Reasons To Be Windowed
	How It Works
	Popup Menu Support
	Menu Initialisation Issues

